drexqq

[Java, 자바]Programmers - 멀쩡한 사각형 본문

공부노트/Programmers

[Java, 자바]Programmers - 멀쩡한 사각형

drexqq 2021. 3. 24. 18:20
728x90
반응형

문제 설명

가로 길이가 Wcm, 세로 길이가 Hcm인 직사각형 종이가 있습니다. 종이에는 가로, 세로 방향과 평행하게 격자 형태로 선이 그어져 있으며, 모든 격자칸은 1cm x 1cm 크기입니다. 이 종이를 격자 선을 따라 1cm × 1cm의 정사각형으로 잘라 사용할 예정이었는데, 누군가가 이 종이를 대각선 꼭지점 2개를 잇는 방향으로 잘라 놓았습니다. 그러므로 현재 직사각형 종이는 크기가 같은 직각삼각형 2개로 나누어진 상태입니다. 새로운 종이를 구할 수 없는 상태이기 때문에, 이 종이에서 원래 종이의 가로, 세로 방향과 평행하게 1cm × 1cm로 잘라 사용할 수 있는 만큼만 사용하기로 하였습니다.
가로의 길이 W와 세로의 길이 H가 주어질 때, 사용할 수 있는 정사각형의 개수를 구하는 solution 함수를 완성해 주세요.

제한사항

  • W, H : 1억 이하의 자연수

입출력 예

WHresult

8 12 80

입출력 예 설명

입출력 예 #1
가로가 8, 세로가 12인 직사각형을 대각선 방향으로 자르면 총 16개 정사각형을 사용할 수 없게 됩니다. 원래 직사각형에서는 96개의 정사각형을 만들 수 있었으므로, 96 - 16 = 80 을 반환합니다.

 

 

코드

import java.math.BigInteger;

class Solution {
    public long solution(int w, int h) {
        int gcd = BigInteger.valueOf(w).gcd(BigInteger.valueOf(h)).intValue();
        long answer = ((long)w * (long)h) - (((w/gcd) + (h/gcd) - 1) * gcd);
        return answer;
    }
}

 

 

math 라이브러리의 BigInteger을 사용하여 최대공약수(GCD)를 간단하게 구하였다.

그 뒤에 문제에 나온 조건에 대한 식을 사용하여 문제를 해결했다.

 

w길이와 h길이의 최대 공약수 만큼 사용할 수 없는 사각형의 덩어리가 나오고 해당 사각형의 갯수를 구하는 방법은 w길이를 최대공약수로 나눈 수와 h길이를 최대공약수로 나눈 수를 더한 뒤 1을 빼주면 나오게 된다. 

728x90
반응형
Comments